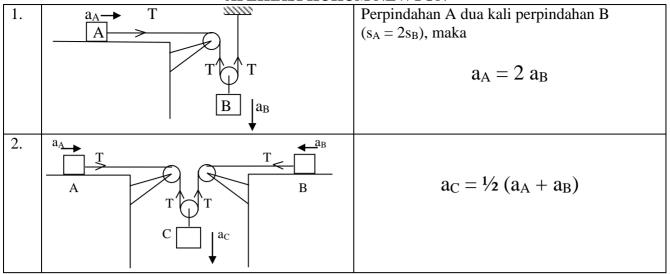
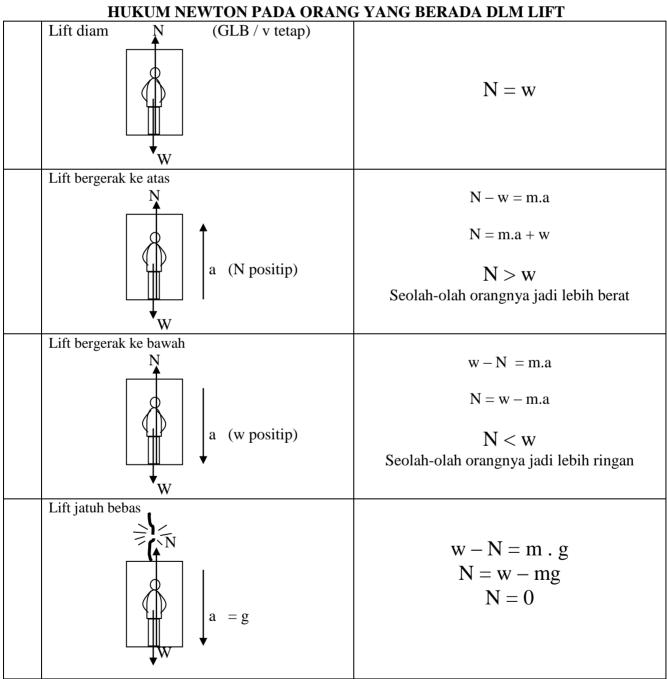

HUKUM-HUKUM NEWTON TENTANG GERAK


6.	T_1 T_1 T_2 B	Gaya Tegangan Tali Adalah gaya yang dikerjakan oleh tali pada suatu benda yang diikat dengan tali tersebut. Gaya tegangan tali selalu sesuai dengan arah tarikan yang dirasakan benda. T ₁ tarikan yang dirasakan oleh langit-langit T ₂ tarikan yang dirasakan oleh benda T ₁ : tarikan yang dirasakan oleh benda A T ₂ : tarikan yang dirasakan oleh benda B
7.	T_1 A T_2 B	T ₁ : tarikan yang dirasakan oleh benda A T ₂ : tarikan yang dirasakan oleh benda B
8.	arah gaya gesek Arah gerak benda	Gaya Gesek Adalah gaya antara dua permukaan benda yang bersentuhan, bersifat melawan kecenderungan gerak benda.
9.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hk. I Newton: Setiap benda akan diam atau bergerak lurus beraturan jika resultan gaya yang bekerja pada benda itu sama dengan nol $\Sigma F = 0 \longrightarrow v = \text{tetap atau } v = 0$
10.	diam GLBB $F_1 - F_2 \neq 0 \text{ maka } \Sigma F \neq 0$ ingat Persamaan GLBB: $v_t = v_o + at$ $v_t^2 = v_o^2 + 2as$ $s = v_o t + \frac{1}{2} at^2$	Hk. II Newton Apabila pada suatu benda bekerja resultan gaya yang tidak sama dengan nol, maka benda tersebut akan mengalami percepatan yang sebanding dan searah dengan arah resultan gaya dan berbanding terbalik dengan massa benda tersebut. $\Sigma F \neq 0$ maka $a \neq 0$ akan mengalami percepatan sehingga gerak benda berupa GLBB. Besar percepatan : $a \sim \Sigma F$ dan $a \sim \frac{1}{m}$ shg $a = \frac{\Sigma F}{m}$
11.	Gaya Aksi : gaya berat benda yang menekan meja Gaya Reaksi : gaya nornal bidang yang menahan berat benda.	Hk. III Newton Jika benda A mengerjakan gaya pada benda B,maka benda B akan mengerjakan gaya pada benda A yang besarnya sama tetapi arahnya berlawanan. Ciri pasangan Aksi Reaksi: 1. Besar gaya reaksi = Besar gaya Aksi 2. Arah gaya rekasi selalu berlawanan dengan arah gaya aksi 3. Pasangan gaya aksi dan rekasi selalu bekerja pada benda yang berbeda



SOAL-SOAL KONSEP HK. NEWTON

No	Soal	Jawab
1.	Ali, Ani , Adi dan Aji mendorong sebuah	
	mobil. Ali dan Ani mendorong dari arah	
	belakang, sedangkan Adi dan Aji mendorong	
	dari arah depan. Ternyata mobil tersebut tetap	
	diam, Jika besar gaya yang diberikan Ali, Ani	
	dan Adi masing-masing 100 N, 250 N dan 200	
	N. Berapakah besar gaya yang diberikan Aji?	
3.	Sebuah benda bermassa 2 kg ditarik oleh gaya	
	F1 yang besarnya 20 N dan arahnya ke kanan	
	dan oleh gaya F2 yang besarnya 12 N dan	
	arahnya ke kiri. Berapakah besar percepatan	
	yang dialami benda?	
4.	Sebuah sepeda motor bermassa 200 kg dari	
	keadaan diam mengalami perceptan tetap dan	
	menempuh jarak 240 m selama 4 detik.	
	Tentukanlah resultan gaya yang bekerja pada	
	motor tersebut	
5.	Sebuah balok bermassa 50 kg dikenai gaya	
	horizontal sebesar 175 N,	
	a. Berapakah percepatan yang dihasilkan	
	b. Berapakah jarak yang ditempuh balok	
	setelah 10 s ?	
	c. Berapa kecepatan setelah 10 s	
6.	Sebuah buku yang massanya 0,5 kg meluncur	
	di atas lantai sejauh 2m dalam waktu 2 detik	
	karena pengaruh sebuah gaya konstan yang	
7.	bekerja padanya hitung besar gaya tersebut ? Perhatikan gambar dua benda yang dihubungkan	
/.	katrol berikut :	
	2 kg	
	Ā	
	1 📙	
	B 4 kg	
	1 TIMen and 1 1 1 1 1 1	
	a. Hitung percepatan kedua balokb. Besar tegangan tali	
8.	Dua buah balok yang dihubungkan dengan tali	
0.	diletakkan di atas lantai datar yang licin, Baok	
	kemudian ditarik oleh gaya luar F seperti gambar	
	$\underline{m_1} = 2 \text{kg}$ $\underline{m_2} = 3 \text{ kg}$	
	F = 30 N	
	Parana hasar tagangan tali yang timbul 9	
9.	Berapa besar tegangan tali yang timbul ?	
) .		
	Hitung:	
	a. Percepatan balok b. Tegangan tali	
	$m1 = 6 \text{ kg} \left[\begin{array}{c c} A \end{array} \right]$	
	B m2 = 2 kg	

APLIKASI HUKUM NEWTON

HUKUM NEWTON PADA GERAK MELINGKAR

HUKUMI NEW I UN PADA	
$\Sigma F_{\rm s} = { m m} \cdot {v^2 \over R}$	Gaya Sentripetal Gaya yang menyebabkan benda dapat melakukan gerak melingkar
Pada benda dihubungkan tali secara	$\Sigma F_s = T$
horizontal:	
T	$T = m \cdot \frac{v^2}{R}$
Pada benda dihubungkan tali secara vertikal	$\Sigma F_s = T - w \cos \theta$
	$T - w \cos \theta = m \cdot \frac{v^2}{R}$
T	Tegangan tali pada sembarang titik :
$\frac{w \cos \theta}{}$	$T = \text{m.g } (\frac{v^2}{Rg} + \text{Cos } \theta)$
\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	$0 < \theta < 180$
	$\theta = 0$ di titik terendah
	$\theta = 180$ di titik tertinggi
Pada Ayunan kerucut	$\Sigma Fs = T \sin \theta$
θ	$T \sin \theta = m \cdot \frac{v^2}{R} \dots (1)$
	Cara mencari besar sudut θ :
T Cos θ	$T \cos \theta = m \cdot g$ (2)
	(1) & (2):
$T \sin \theta$	$tg \; \theta = \frac{v^2}{Rg}$
Pada kendaraan yang berbelok di jalan miring	$\Sigma Fs = N \sin \theta$
NCos θ N	
† †	$N \sin \theta = m \cdot \frac{v^2}{R}$
N Sin θ	Besar sudut θ :
	$tg \theta = \frac{v^2}{Rg}$
<u>w</u> θ/	

SOAL-SOAL KONSEP APLIKASI HUKUM NEWTON

	L-SOAL KONSEP APLIKASI HUKUM NEWTO	JN
No	Soal	
1	a _A → T	
	$A \longrightarrow C$	
	$T \downarrow T \downarrow T$	
	$B \mid a_B$	
	' ∀	
	Dua buah benda massanya $A = 3 \text{ kg dan } B = 8$	
	kg disusun seperti gambar di atas. $g = 10 \text{ m/s}^2$.	
	Berapakah percepatan benda A dan B serta	
	berapakah tegangan talinya?	
2		
2	$\stackrel{a_A}{\longrightarrow}$ T $\stackrel{\longleftarrow}{\longrightarrow}$	
	$A \longrightarrow B$	
	$T \cap T$	
	\downarrow	
	C ac	
	Dada sisting assemble and a 1 1 1 1 1 1 1	
	Pada sistim seperti pada gambar di atas, benda A	
	bergeser ke kanan dengan percepatan 6 m/s ² dan	
	benda B bergeser ke kiri dengan percepatan 4 m/s²,	
	Jika massa katrol dan tali diabaikan, massa benda	
	C adalah 12kg, dan $g = 10 \text{ m/s}^2$, maka tegangan tali	
	T selama benda-benda bergerak adalah	
3	Pada lift yang mulai bergerak ke atas dengan	
	percepatan 3 m/s ² , seseorang menimbang dirinya	
	pada neraca pegas, ternyata beratnya adalah 650 N.	
	Berapa berat orang itu dalam keadaan normal	
4	Sebuah bandul bermassa 0,4 kg dengan panjang tali	
	2m diputar secara horizontal. Jika tali hanya	
	mamapu menahan tegangan 20 N, berapakah	
	kelajuan bandul maksimum yang diperkenankan	
5	Sebauh bandul bermassa 0,5 kg dengan panjang tali	
	1 m diputar secara vertikal denan kecepatan sudut	
	konstan sebesar 10 rad/s. Tentukan besar tegangan	
	tali di (a) titik tertinggi (b) di titik terendah	
	0.1 1.1	
6	Sebauh batu yang diikatkan pada ujung seutas tali	
	diputar sedemikian rupa sehingga membentuk	
	suatu ayunan kerucut. Bila panjang tali 30 cm dan	
	sudut puncak ayunan sama dengan 30°, berapa	
	kecepatan batu ?	
7	$NCos \theta N$	
	↑ ↑	
	/	
	\gtrsim /	
	N Sin θ	
	O TO THE O	
	*	
	w θ/	
	Berapa besar susut yang harus dibuat agar mobil	
	dapat melaju dengan kecepatan 13 m/s, tanpa	
	keluar lintasan	