Teori Kinetik Gas

Disusun Oleh : Ichwan Aryono, S.Pd.

KOMPETENSI DASAR

- 3.6 Menjelaskan teori kinetik gas dan karakteristik gas pada ruang tertutup
- 4.6 Menyajikan karya yang berkaitan dengan teori kinetik gas dan makna fisisnya

Indikator Pencapaian Kompetensi

- 3.6.5 Mendeskripsikan dan memformulasikan keterkaitan antara suhu dan energi kinetik gas
- 3.6.6 Memformulasikan besaran-besaran yang mempengaruhi kecepatan partikel gas.
- 3.6.7 Menerapkan persamaan ekuipartisi energi dan energi dalam untuk menyelesaikan persoalan

Characteristic of Ideal Gas

- Gas consists of a great number of particles called molecules
- Gas molecules move randomly and satisfy Newton's laws of motion.
- Molecules behave as particles where their sizws are very small compared to the average distance between particles and he size of their container.
- The collision among molecules and between molecules and their container is completely elastic.
- The intermoleculeforce are neglected, exept during collision. During collision, molecule exerts force to the container's wall.

Pressure of Monoatomic Gas

The time interval by particlefor doing a back-and-forth movement in the container is :

$$
\Delta t=\frac{2 l}{v_{x}}
$$

The momentum change experienced by the gas when it hit the wall of the container :

$$
\begin{aligned}
& I=-m_{0} v_{x}-m_{0} v_{x} \\
& F . \Delta t=-2 m_{0} v_{x}
\end{aligned}
$$

$$
\begin{aligned}
& F . \Delta t=\left[-2 m_{0} v_{x}\right] \\
& P . A \frac{2 l}{v_{x}}=2 m_{0} v_{x} \\
& P V=m_{0} v_{x}^{2}
\end{aligned}
$$

In the model of kinetic of gas, there is no difference of $v x$, vy and $v z$ therefore it appies $\left(v_{x}{ }^{2}\right)_{a v}=\left(v_{y}{ }^{2}\right)_{a v}=\left(v_{z}{ }^{2}\right)_{a v}$. Thereby, the following equation applies:

$$
\begin{aligned}
& \left(\mathrm{v}^{2}\right)_{\mathrm{av}}=\left(\mathrm{v}_{\mathrm{x}}\right)_{\mathrm{av}}+\left(\mathrm{v}_{\mathrm{y}}{ }^{2}\right)_{\mathrm{av}}+\left(\mathrm{v}_{\mathrm{z}}^{2}\right)_{\mathrm{av},} \\
& \left(\mathrm{v}^{2}\right)_{\mathrm{av}}=3 \mathrm{v}_{\mathrm{x}}^{2} \text { so } \mathrm{v}_{\mathrm{x}}^{2}=1 / 3 \mathrm{v}_{\mathrm{av}}{ }^{2}
\end{aligned}
$$

$$
P V=\frac{1}{3} m_{0} \overline{v^{2}}
$$

For total number of gas particles (N) :

$$
P=\frac{1}{3} \frac{N m_{0} \overline{v^{2}}}{V}
$$

Because the average kinetic energy is $E k=1 / 2 \mathrm{mv}^{2}$, so :

The total pressure exerted by the gas is becaused of total number kinetic energy of the gas particles

Student Activity \#1

A tank contains of a gas at the pressure of P. If the pressure becomes twice, determine the speed of the air gas!

Student Activity \#2

A container with volum of $0,5 \mathrm{~m}^{3}$ is filled 4 mol of neon gas at temperature of $27^{\circ} \mathrm{C}$,
a. Determine the total kinetic energy of the gas
b. What is the kinetic energy each particle ?

Student Activity \#3

A container with volum of 25 L is filled by 2 mol of monoatomic gas. If each gas molecule has average kinetic energy of $2,8 \times 10^{-21} \mathrm{~J}$, Determine the pressure in the container.

Quiz

The average kinetic energy of the mono atomic molecule of gas which is saved in the 30 L of enclosed tube, with 1 atm of pressure is $2.52 \times 10^{-}$ ${ }^{21} \mathrm{~J}$. Determine the mol of the gas !

Relation the temperature of the gas with its

 kinetic energy

The effective velocity of the gas molecule :

The effective velocity ($\mathrm{v}_{\text {eff }}$ or $\mathrm{v}_{\mathrm{rms}}$) can be determined by :

$$
v_{r m s}=\sqrt{\overline{v^{2}}}
$$

HUBUNGAN KECEPATAN EFFEKTIF DENGAN BESARAN LAIN

$\mathrm{E}_{\mathrm{k}}=\frac{3}{2} \mathrm{PV}$

$$
1 / 2 \mathrm{~m}_{\text {total }} \mathrm{v}^{2}=\frac{3}{2} \mathrm{NkT}
$$

$$
1 / 2 \mathrm{mNv}_{\mathrm{ms}}^{2}=\frac{3}{2} \mathrm{NkT}
$$

$$
\mathrm{v}_{\mathrm{rms}}=\sqrt{\frac{3 \mathrm{kT}}{\mathrm{~m}}}
$$

$\mathrm{V}_{\mathrm{rms}}=$ effective velocity $\mathrm{m}=$ mass of gas particle
$\mathrm{k}=$ Boltzmann's constant

$1 / 2 \mathrm{~m}_{\text {total }} \mathrm{v}^{2}=\frac{3}{2} \mathrm{nRT}$
$1 / 2 \mathrm{nM}_{\mathrm{r}} \mathrm{v}_{\mathrm{rms}}^{2}=\frac{3}{2} \mathrm{nRT}$

$$
\mathrm{v}_{\mathrm{rms}}=\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}_{\mathrm{r}}}}
$$

$\mathrm{Mr}=$ Relative molecules mass
R = General Gas constant
$\mathrm{T}=$ absolute temperature

$$
\mathrm{E}_{\mathrm{k}}=\frac{3}{2} \mathrm{PV}
$$

$$
1 / 2 \mathrm{~m}_{\text {total }} \mathrm{v}^{2}=\frac{3}{2} \mathrm{PV}
$$

$$
1 / 2 \rho \mathrm{Vv}_{\mathrm{rms}}^{2}=\frac{3}{2} \mathrm{PV}
$$

$$
\mathrm{v}_{\mathrm{rms}}=\sqrt{\frac{3 P}{\rho}}
$$

$\mathrm{P}=$ pressure
$\rho=$ specific mass
$\mathrm{T}=$ absolute temperature

Student Activity \#1

A tank contains argon gas with relative atomic mass of $40 \mathrm{~kg} / \mathrm{kmol}$ at temperature of $27^{\circ} \mathrm{C}$. Determine :
a. The average translation of kinetic energy permolecules
b. Its effective velocity

Quiz

At some pressure, the velocity of 10 numbers molecules of gas follows :

Velocity (m/s)	20	30	40	50	80
Numbers of molecule	3	2	1	3	1

Determine:

a. Average of the velocity
b. Effective velocity of the gas

Student Activity \#3

Hidrogen gas ($\mathrm{M}=2 \mathrm{~kg} / \mathrm{kmol}$) and nitrogen gas ($\mathrm{M}=28 \mathrm{~kg} / \mathrm{kmol}$) is at the same temperature,

Determine :
a. The Ratio of average kinertic energy between hidrogen gas and nitrogen gas
b. The ratio of effective velocity between hidrogen and nitrogen

Student Activity \#4

Determine the ratio of effective velocity at the same temperature between :
a. Molecule N_{2} and molecule CO_{2}
b. Molecule H_{2} and molecule $\mathrm{H}_{2} \mathrm{O}$
($\mathrm{N}=14 \mathrm{~g} / \mathrm{mol}, \mathrm{C}=12 \mathrm{~g} / \mathrm{mol}, \mathrm{O}=16 \mathrm{~g} / \mathrm{mol}, \mathrm{H}=$ $1 \mathrm{~g} / \mathrm{mol}$)

Quiz

An air gas at room's temperature has mass density of $1.29 \mathrm{~kg} / \mathrm{m}^{3}$. If the air pressure 100 kPa . Determine the molecules effective velocity !

Student Activity \# 5

Determine the average kinetic energy and internal energy in 5 mol ideal gas at temperature 400 K , if the gas is :
a. Monoatomic gas
b. Diatomic gas

Student Activity \# 6

2.0 mol of polyatomic gas has internal energy of $6.21 \times 10^{4} \mathrm{~J}$. Determine the sum of degree of freedom of polyatomic gas.

Student Activity \# 7

At normal condition nitrogen gas has density of $1.25 \mathrm{~kg} / \mathrm{m}^{3}$. Calculate :
a. Effective velocity of nitrogen gas molecule at temperature of $50^{\circ} \mathrm{C}$
b. Average kinetic energy
(M nitrogen $=28 \mathrm{~kg} / \mathrm{kmol}$)

Student Activity \# 8

Neon is a monoatomic gas, what is internal energy of two grams neon gas at temperature of $50^{\circ} \mathrm{C}$
(M neon $=10 \mathrm{~g} / \mathrm{mol}$)

