Teori Kinetik Gas

Hukum Boyle :

Dalam ruang yang tertutup dengan temperatur yang dijaga tetap, tekanan gas berbanding terbalik dengan volume ruang :

$$
P_{1} V_{1}=P_{2} V_{2}
$$

Hukum Gay Lussac

Dalam ruang tertutup dengan tekanan yang dijaga konstan, volume gas sebanding dengan suhu mutlaknya

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
$$

Dalam grafik ditunjukkan sebagai berikut :

Hukum Boyle Gay Lussac

Dalam ruang tertutup hubungan suhu, volume, dan tekanan dinyatakan dengan :

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

Beberapa Asumsi tentang Gas Ideal

■ Gas tersusun atas partikel-partikel yang jumlahnya sangat banyak yang disebut molekul

- Molekul gas bergerak acak dan memenuhi hukum-hukum Newton tentang gerak
■ Ukuran molekul gas dapat diabaikan dibanding ukuran wadahnya
- Tumbukan antar molekul adalah tumbukan lenting sempurna
- Gaya antar molekul diabaikan.

Persamaan Gas Ideal

$$
\frac{P V}{T}=n R \text { atau } \frac{P V}{T}=N k
$$

P = Tekanan (Pascal)
$V=\left(m^{3}\right)$
T = Suhu (Kelvin)
$\mathrm{N}=$ Jumlah partikel
$\mathrm{n}=\mathrm{N} / \mathrm{N}_{\mathrm{A}}$
$n=M / M_{r} ; M_{r}$: relative mass of molecule
$\mathrm{N}_{\mathrm{A}}=$ Avogadro's Number $=6.022 \times 10^{23}$ Particle $/ \mathrm{mol}$
$R=$ the universal gas constant $=8.314 \mathrm{~J} /(\mathrm{mol} . \mathrm{K})$
$\mathrm{k}=$ Boltzmann Constant $\left.\left(1.38 \times 10^{-23}\right) \mathrm{J} / \mathrm{K}\right)$

Latihan :

1. In an enclosed container 4 litre gas at pressure of 4 atm and temperature of $47^{\circ} \mathrm{C}$, at certain time, the pressure is changed become $1 / 4$ from its initial, and the temperature is maintained at its initial value, Determine the volume !
2. A cylindrical pump contains oxygen gas at temperature of 373 K and pressure of 20 atm . At certain time, the piston is pushed down in a way that its volume become 50 liters. As a result, the temperature of gas increases 300 K . what is the current pressure given that the volum of cylinder is 100 liter:
3. Gas in enclosed container with volume of 1 liter, at pressure of 10 atm and temperature of $47^{\circ} \mathrm{C}$. If the gas is warmed at constant pressure so its temperature become $77^{\circ} \mathrm{C}$. Determine its volume!
4. Oxygen Gas at temperature of $27^{\circ} \mathrm{C}$ and pressure of $10^{5} \mathrm{~Pa}$ has volume of 30 liter. Determine the volume of the oxygen given that the pressure become $2.5 \times 10^{5} \mathrm{~Pa}$ and the temperature becomes $127^{\circ} \mathrm{C}$
5. A rubber ballon with volume of 20 liter is filled with oxygen at pressure of 135 atm and temperature of $27^{\circ} \mathrm{C}$. Determine the oxygen mass given that $\mathrm{R}=8.314 \mathrm{~J} /(\mathrm{mol} . \mathrm{K})$
6. An amount of gas with volume of 600 liter, temperature of $27^{\circ} \mathrm{Cand}$ pressure of 5 atm has mass of 1.95 kg . Determine the relative mass of the gas !
7. One mol gas is places in an container that has 100 I of volume at temperature of $127^{\circ} \mathrm{C}$. Determine the pressure of the gas !
8. A bubble air at the base of the lake with 44 m of depth has volume of $1 \mathrm{~cm}^{3}$. If the base's temperature is $5.5^{\circ} \mathrm{C}$ and the surface temperature is $21^{\circ} \mathrm{C}$. What is the volume of the bubble when its close to the surface ?
9. A wheel is filled with an air at temperature of $15^{\circ} \mathrm{C}$ and pressure of $2.2 \times 10^{5} \mathrm{~Pa}$. If the temperature of the wheel become $40^{\circ} \mathrm{C}$. What is the part of the air that exit from the wheel if the pressure is maintained as its initial
10. The density of the gas at temperature of T and pressure of P is ρ, If the pressure of the gas is increases become 2 P and the temperature is decreased become 0.5 T , Determine the final density.
